N алюминия. Химические свойства алюминия. Использование рассматриваемого металла в промышленности

N алюминия. Химические свойства алюминия. Использование рассматриваемого металла в промышленности

3s 2 3p 1 Химические свойства Ковалентный радиус 118 пм Радиус иона 51 (+3e) пм Электроотрицательность
(по Полингу) 1,61 Электродный потенциал -1,66 в Степени окисления 3 Термодинамические свойства простого вещества Плотность 2,6989 /см ³ Молярная теплоёмкость 24,35 Дж /( ·моль) Теплопроводность 237 Вт /( ·) Температура плавления 933,5 Теплота плавления 10,75 кДж /моль Температура кипения 2792 Теплота испарения 284,1 кДж /моль Молярный объём 10,0 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая гранецентрированая Параметры решётки 4,050 Отношение c/a — Температура Дебая 394

Алюми́ний — элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, атомный номер 13. Обозначается символом Al (Aluminium). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости (после кислорода и кремния) химический элемент в земной коре.

Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

По некоторым биологическим исследованиям поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера, но эти исследования были позже раскритикованы и вывод о связи одного с другим опровергался.

История

Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути.

Получение

Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру . Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 6 с последующим электролизом с использованием графитовых электродов . Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке .

Для производства 1 т алюминия чернового требуется 1,920 т глинозёма, 0,065 т криолита, 0,035 т фторида алюминия, 0,600 т анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока.

Физические свойства

Металл серебристо-белого цвета, лёгкий, плотность — 2,7 г/см³, температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C, удельная теплота плавления — 390 кДж/кг, температура кипения — 2500 °C, удельная теплота испарения — 10,53 МДж/кг, временное сопротивление литого алюминия — 10-12 кг/мм², деформируемого — 18-25 кг/мм², сплавов — 38-42 кг/мм².

Твёрдость по Бринеллю — 24-32 кгс/мм², высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу.

Алюминий обладает высокой электропроводностью и теплопроводностью, 65 % от электропроводности меди, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами.

Нахождение в природе

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27 Al со следами 26 Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей.

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах). Некоторые из них:

  • Бокситы — Al 2 O 3 . H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)
  • Нефелины — KNa 3 4
  • Алуниты — KAl(SO 4) 2 . 2Al(OH) 3
  • Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)
  • Корунд — Al 2 O 3
  • Полевой шпат (ортоклаз) — K 2 O×Al 2 O 3 ×6SiO 2
  • Каолинит — Al 2 O 3 ×2SiO 2 × 2H 2 O
  • Алунит — (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3
  • Берилл — 3ВеО. Al 2 О 3 . 6SiO 2

В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в поверхностных водных объектах России колеблются от 0,001 до 10 мг/л.

Химические свойства

Гидроксид алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями : с H 2 O (t°);O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH 4 + , горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.

Легко реагирует с простыми веществами:

  • с кислородом : 4Al + 3O 2 = 2Al 2 O 3
  • с галогенами : 2Al + 3Br 2 = 2AlBr 3
  • с другими неметаллами реагирует при нагревании:
    • с серой , образуя сульфид алюминия : 2Al + 3S = Al 2 S 3
    • с азотом , образуя нитрид алюминия : 2Al + N 2 = 2AlN
    • с углеродом , образуя карбид алюминия : 4Al + 3С = Al 4 С 3

Метод, изобретённый почти одновременно Чарльзом Холлом во Франции и Полем Эру в США в 1886 году и основанный на получении алюминия электролизом глинозема, растворённого в расплавленном криолите, положил начало современному способу производства алюминия. С тех пор, в связи с усовершенствованием электротехники , производство алюминия совершенствовалось. Заметный вклад в развитие производства глинозема внесли русские ученые К. И. Байер, Д. А. Пеняков, А. Н. Кузнецов, Е. И. Жуковский, А. А. Яковкин и др.

Первый алюминиевый завод в России был построен в 1932 году в Волхове . Металлургическая промышленность СССР в 1939 году производила 47,7 тыс.тонн алюминия, ещё 2,2 тыс.тонн импортировалось.

В России фактическим монополистом по производству алюминия является ОАО «Русский алюминий », на который приходится около 13 % мирового рынка алюминия и 16 % глинозёма.

Мировые запасы бокситов практически безграничны, то есть несоизмеримы с динамикой спроса. Существующие мощности могут производить до 44,3 млн т первичного алюминия в год. Следует также учитывать, что в будущем некоторые из применений алюминия могут быть переориентированы на использование, например, композитных материалов.

Применение

Кусок алюминия и американская монетка.

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al 2 O 3 , которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния - сплав дюралюминий.

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 2 раза дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия (37 1/ом) по сравнению с медью (63 1/ом) компенсируют увеличением сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является прочная оксидная плёнка, затрудняющая спаивание .

  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике.
  • Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал .
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин , нефтяным платформам , теплообменной аппаратуре , а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода .
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе.

— Алюминиево-магниевые сплавы обладают высокой коррозионной стойкостью и хорошо свариваются; из них делают, например, корпуса быстроходных судов.

— Алюминиево-марганцевые сплавы во многом аналогичны алюминиево-магниевым.

— Алюминиево-медные сплавы (в частности, дюралюминий) можно подвергать термообработке, что намного повышает их прочность. К сожалению, термообработанные материалы нельзя сваривать, поэтому детали самолётов до сих пор соединяют заклёпками. Сплав с бо́льшим содержанием меди по цвету внешне очень похож на золото , и его иногда применяют для имитации последнего.

— Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.

— Комплексные сплавы на основе алюминия: авиаль.

— Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Стекловарение

В стекловарении используются фторид, фосфат и оксид алюминия.

Пищевая промышленность

Алюминий зарегистрирован в качестве пищевой добавки Е173.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

— Алюминий: горючее в ракетных топливах. Применяется в виде порошка и суспензий в углеводородах и др
— Гидрид алюминия
— Боранат алюминия
— Триметилалюминий
— Триэтилалюминий
— Трипропилалюминий

Теоретические характеристики топлив, образованных гидридом алюминия с различными окислителями.

Окислитель Удельная тяга (Р1, сек) Температура сгорания °С Плотность топлива, г/см³ Прирост скорости, ΔV ид, 25, м/с Весовое содерж. горючего, %
Фтор 348,4 5009 1,504 5328 25
Тетрафторгидразин 327,4 4758 1,193 4434 19
ClF 3 287,7 4402 1,764 4762 20
ClF 5 303,7 4604 1,691 4922 20
Перхлорилфторид 293,7 3788 1,589 4617 47
Фторид кислорода 326,5 4067 1,511 5004 38,5
Кислород 310,8 4028 1,312 4428 56
Перекись водорода 318,4 3561 1,466 4806 52
N 2 O 4 300,5 3906 1,467 4537 47
Азотная кислота 301,3 3720 1,496 4595 49

Алюминий в мировой культуре

Поэт Андрей Вознесенский написал в 1959 году стихотворение «Осень», в котором использовал алюминий в качестве художественного образа:
…А за окошком в юном инее
лежат поля из алюминия…

Виктор Цой написал песню «Алюминиевые огурцы» с припевом:
Сажаю алюминиевые огурцы
На брезентовом поле
Я сажаю алюминиевые огурцы
На брезентовом поле

Токсичность

Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела): ацетат алюминия — 0,2-0,4; гидроксид алюминия — 3,7-7,3; алюминиевые квасцы — 2,9. В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек.

Дополнительная информация

— Гидроксид алюминия
— Энциклопедия об алюминии
— Соединения алюминия
— Международный институт алюминия

Алюминий, Aluminium, Al (13)

Вяжущие вещества, содержащие алюминий, известны с глубокой древности. Однако под квасцами (лат. Alumen или Alumin, нем. Alaun), о которых говорится, в частности, у Плиния, в древности и в средние века понимали различные вещества. В «Алхимическом словаре» Руланда слово Alumen с добавлением различных определений приводится в 34 значениях. В частности, оно означало антимоний, Alumen alafuri — алкалическую соль, Alumen Alcori — нитрум или алкалические квасцы, Alumen creptum — тартар (винный камень) хорошего вина, Alumen fascioli — щелочь, Alumen odig — нашатырь, Alumen scoriole — гипс и т. д. Лемери, автор известного «Словаря простых аптекарских товаров» (1716), также приводит большой перечень разновидностей квасцов.

До XVIII в. соединения алюминия (квасцы и окись) не умели отличать от других, похожих по внешнему виду соединений. Лемери следующим образом описывает квасцы: «В 1754 r. Маргграф выделил из раствора квасцов (действием щелочи) осадок окиси алюминия, названной им »квасцовой землей» (Alaunerde), и установил ее отличие от других земель. Вскоре квасцовая земля получила название алюмина (Alumina или Alumine). В 1782 г. Лавуазье высказал мысль, что алюмина представляет собой окисел неизвестного элемента. В «Таблице простых тел» Лавуазье поместил алюмину (Alumine) среди «простых тел, солеобразующих, землистых«. Здесь же приведены синонимы названия алюмина: аргила (Argile), квасцовая. земля, основание квасцов. Слово аргила, или аргилла, как указывает Лемери в своем словаре, происходит от греч. горшечная глина. Дальтон в своей »Новой системе химической философии» приводит специальный знак для алюмины и дает сложную структурную (!) формулу квасцов.

После открытия с помощью гальванического электричества щелочных металлов Дэви и Берцелиус безуспешно пытались выделить тем же путем металлический алюминий из глинозема. Лишь в 1825 г. задача была решена датским физиком Эрстедом химическим способом. Он пропускал хлор через раскаленную смесь глинозема с углем, и полученный безводный хлористый алюминий нагревал с амальгамой калия. После испарения ртути, пишет Эрстед, получался металл, похожий по внешнему виду на олово. Наконец, в 1827 г. Велер выделил металлический алюминий более эффективным способом — нагреванием безводного хлористого алюминия с металлическим калием.

Около 1807 г. Дэви, пытавшийся осуществить электролиз глинозема, дал название предполагаемому в нем металлу алюмиум (Alumium) или алюминум (Aluminum). Последнее название с тех пор ужилось в США, в то время как в Англии и других странах принято предложенное впоследствии тем же Дэви название алюминиум (Aluminium). Вполне ясно, что все эти названия произошли от латинского слова квасцы (Alumen), насчет происхождения которого существуют разные мнения, базирующиеся на свидетельствах различных авторов, начиная с древности.

А. М. Васильев, отмечая неясное происхождение этого слова, приводит мнение некоего Исидора (очевидно Исидора Севильского, епископа, жившего в 560 — 636 гг.,- энциклопедиста, занимавшегося, в частности, этимологическими исследованиями): «Alumen называют a lumen, так как он придает краскам lumen (свет, яркость), будучи добавлен при крашении«. Однако это, хотя и очень давнее, объяснение не доказывает, что слово alumen имеет именно такие истоки. Здесь вполне вероятна лишь случайная тавтология. Лемери (1716) в свою очередь указывает, что слово alumen связано с греческим (халми), означающим соленость, соляной раствор, рассол и пр.

Русские названия алюминия в первые десятилетия XIX в. довольно разнообразны. Каждый из авторов книг по химии этого периода, очевидно, стремился предложить свое название. Так, Захаров именует алюминий глиноземом (1810), Гизе — алумием (1813), Страхов — квасцом (1825), Иовский — глинистостью, Щеглов — глиноземием (1830). В »Магазине Двигубского» (1822 — 1830) глинозем называется алюмин, алюмина, алумин (например, фосфорно-кисловатая алюмина), а металл — алуминий и алюминий (1824). Гесс в первом издании «Оснований чистой химии» (1831) употребляет название глиноземий (Aluminium), а в пятом издании (1840) — глиний. Однако названия для солей он образует на основе термина глинозем, например сернокислый глинозем. Менделеев в первом издании »Основ химии" (1871) пользуется названиями алюминий и глиний. В дальнейших изданиях слово глиний уже не встречается.

Одними из самых удобных в обработке материалов являются металлы. Среди них также есть свои лидеры. Так, например, основные свойства алюминия известны людям уже давно. Они настолько подходят для применения в быту, что данный металл стал очень популярным. Каковы же как простого вещества и как атома, рассмотрим в данной статье.

История открытия алюминия

Издавна человеку было известно соединение рассматриваемого металла - Оно использовалось как средство, способное набухать и связывать между собой компоненты смеси, это было необходимо и при выделке кожаных изделий. О существовании в чистом виде оксида алюминия стало известно в XVIII веке, во второй его половине. Однако при этом получено не было.

Сумел же выделить металл из его хлорида впервые ученый Х. К. Эрстед. Именно он обработал амальгамой калия соль и выделил из смеси серый порошок, который и был алюминием в чистом виде.

Тогда же стало понятно, что химические свойства алюминия проявляются в его высокой активности, сильной восстановительной способности. Поэтому долгое время с ним никто больше не работал.

Однако в 1854 году француз Девиль смог получить слитки металла методом электролиза расплава. Этот способ актуален и по сей день. Особенно массовое производство ценного материала началось в XX веке, когда были решены проблемы получения большого количества электроэнергии на предприятиях.

На сегодняшний день данный металл - один из самых популярных и применяемых в строительстве и бытовой промышленности.

Общая характеристика атома алюминия

Если характеризовать рассматриваемый элемент по положению в периодической системе, то можно выделить несколько пунктов.

  1. Порядковый номер - 13.
  2. Располагается в третьем малом периоде, третьей группе, главной подгруппе.
  3. Атомная масса - 26,98.
  4. Количество валентных электронов - 3.
  5. Конфигурация внешнего слоя выражается формулой 3s 2 3p 1 .
  6. Название элемента - алюминий.
  7. выражены сильно.
  8. Изотопов в природе не имеет, существует только в одном виде, с массовым числом 27.
  9. Химический символ - AL, в формулах читается как "алюминий".
  10. Степень окисления одна, равна +3.

Химические свойства алюминия полностью подтверждаются электронным строением его атома, ведь имея большой атомный радиус и малое сродство к электрону, он способен выступать в роли сильного восстановителя, как и все активные металлы.

Алюминий как простое вещество: физические свойства

Если говорить об алюминии, как о простом веществе, то он представляет собой серебристо-белый блестящий металл. На воздухе быстро окисляется и покрывается плотной оксидной пленкой. Тоже самое происходит и при действии концентрированных кислот.

Наличие подобной особенности делает изделия из этого металла устойчивыми к коррозии, что, естественно, очень удобно для людей. Поэтому и находит такое широкое применение в строительстве именно алюминий. также еще интересны тем, что данный металл очень легкий, при этом прочный и мягкий. Сочетание таких характеристик доступно далеко не каждому веществу.

Можно выделить несколько основных физических свойств, которые характерны для алюминия.

  1. Высокая степень ковкости и пластичности. Из данного металла изготовляют легкую, прочную и очень тонкую фольгу, его же прокатывают в проволоку.
  2. Температура плавления - 660 0 С.
  3. Температура кипения - 2450 0 С.
  4. Плотность - 2,7 г/см 3 .
  5. Кристаллическая решетка объемная гранецентрированная, металлическая.
  6. Тип связи - металлическая.

Физические и химические свойства алюминия определяют области его применения и использования. Если говорить о бытовых сторонах, то большую роль играют именно уже рассмотренные нами выше характеристики. Как легкий, прочный и антикоррозионный металл, алюминий применяется в самолето- и кораблестроении. Поэтому эти свойства очень важно знать.

Химические свойства алюминия

С точки зрения химии, рассматриваемый металл - сильный восстановитель, который способен проявлять высокую химическую активность, будучи чистым веществом. Главное - это устранить оксидную пленку. В этом случае активность резко возрастает.

Химические свойства алюминия как простого вещества определяются его способностью вступать в реакции с:

  • кислотами;
  • щелочами;
  • галогенами;
  • серой.

С водой он не взаимодействует при обычных условиях. При этом из галогенов без нагревания реагирует только с йодом. Для остальных реакций нужна температура.

Можно привести примеры, иллюстрирующие химические свойства алюминия. Уравнения реакций взаимодействия с:

  • кислотами - AL + HCL = AlCL 3 + H 2 ;
  • щелочами - 2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ;
  • галогенами - AL + Hal = ALHal 3 ;
  • серой - 2AL + 3S = AL 2 S 3 .

В целом, самое главное свойство рассматриваемого вещества - это высокая способность к восстановлению других элементов из их соединений.

Восстановительная способность

Восстановительные свойства алюминия хорошо прослеживаются на реакциях взаимодействия с оксидами других металлов. Он легко извлекает их из состава вещества и позволяет существовать в простом виде. Например: Cr 2 O 3 + AL = AL 2 O 3 + Cr.

В металлургии существует целая методика получения веществ, основанная на подобных реакциях. Она получила название алюминотермии. Поэтому в химической отрасли данный элемент используется именно для получения других металлов.

Распространение в природе

По распространенности среди других элементов-металлов алюминий занимает первое место. Его в земной коре содержится 8,8 %. Если же сравнивать с неметаллами, то место его будет третьим, после кислорода и кремния.

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико.

Самые распространенные вещества, содержащие рассматриваемый металл:

  • полевые шпаты;
  • бокситы;
  • граниты;
  • кремнезем;
  • алюмосиликаты;
  • базальты и прочие.

В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Получение

Физические и химические свойства алюминия позволяют получать его только одним способом: электролизом расплава соответствующего оксида. Однако процесс этот технологически сложен. Температура плавления AL 2 O 3 превышает 2000 0 С. Из-за этого подвергать электролизу непосредственно его не получается. Поэтому поступают следующим образом.


Выход продукта составляет 99,7 %. Однако возможно получение и еще более чистого металла, который используется в технических целях.

Применение

Механические свойства алюминия не столь хороши, чтобы применять его в чистом виде. Поэтому чаще всего используются сплавы на основе данного вещества. Таких много, можно назвать самые основные.

  1. Дюралюминий.
  2. Алюминиево-марганцевые.
  3. Алюминиево-магниевые.
  4. Алюминиево-медные.
  5. Силумины.
  6. Авиаль.

Основное их отличие - это, естественно, сторонние добавки. Во всех основу составляет именно алюминий. Другие же металлы делают материал более прочным, стойким к коррозии, износоустойчивым и податливым в обработке.

Можно назвать несколько основных областей применения алюминия как в чистом виде, так и в виде его соединений (сплавов).


Вместе с железом и его сплавами алюминий - самый важный металл. Именно эти два представителя периодической системы нашли самое обширное промышленное применение в руках человека.

Свойства гидроксида алюминия

Гидроксид - самое распространенное соединение, которое образует алюминий. Свойства химические его такие же, как и у самого металла, - он амфотерный. Это значит, что он способен проявлять двойственную природу, вступая в реакции как с кислотами, так и со щелочами.

Сам по себе гидроксид алюминия - это белый студенистый осадок. Получить его легко при взаимодействии соли алюминия с щелочью или При взаимодействии с кислотами данный гидроксид дает обычную соответствующую соль и воду. Если же реакция идет с щелочью, то формируются гидроксокомплексы алюминия, в которых его координационное число равно 4. Пример: Na - тетрагидроксоалюминат натрия.

ОПРЕДЕЛЕНИЕ

Алюминий - тринадцатый элемент Периодической таблицы. Обозначение - Al от латинского «aluminium». Расположен в третьем периоде, IIIА группе. Относится к металлам. Заряд ядра равен 13.

Алюминий - самый распространенный в земной коре металл. Он входит в состав глин, полевых шпатов, слюд и многих других минералов. Общее содержание алюминия в земной коре составляет 8% (масс.).

Алюминий - серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Атомная и молекулярная масса алюминия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии алюминий существует в виде одноатомных молекул Al, значения его атомной и молекулярной масс совпадают. Они равны 26,9815.

Изотопы алюминия

Известно, что в природе алюминий может находиться в виде одного стабильного изотопа 27 Al. Массовое число равно 27. Ядро атома изотопа алюминия 27 Al содержит тринадцать протонов и четырнадцать нейтронов.

Существуют радиоактивные изотопы алюминия с массовыми числами от 21-го до 42-х, среди которых наиболее долгоживущим является изотоп 26 Al, период полураспада которого составляет 720 тысяч лет.

Ионы алюминия

На внешнем энергетическом уровне атома алюминия имеется три электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3р 1 .

В результате химического взаимодействия алюминий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Al 0 -3e → Al 3+ .

Молекула и атом алюминия

В свободном состоянии алюминий существует в виде одноатомных молекул Al. Приведем некоторые свойства, характеризующие атом и молекулу алюминия:

Сплавы алюминия

Основное применение алюминия - производство сплавов на его основе. Легирующие добавки (например, медь, кремний, магний, цинк, марганец) вводят в алюминий главным образом для повышения его прочности.

Широкое применение имеют дуралюмины, содержащие медь и магний, силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5-11,5% магния).

Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка и железа.

Примеры решения задач

ПРИМЕР 1

Задание Для сварки рельсов по методу алюмотермии используют смесь алюминия и оксида железа Fe 3 O 4 . Составьте термохимическое уравнение реакции, если при образовании железа массой 1 кг (1000 г) выделяется 6340 кДж тепла.
Решение Запишем уравнение реакции получения железа алюмотермическим методом:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 .

Найдем теоретическую массу железа (рассчитанная по термохимическому уравнению реакции):

n(Fe) = 9 моль;

m(Fe) = n(Fe) ×M(Fe);

m(Fe) = 9 × 56 = 504 г.

Пусть в ходе реакции выделится х кДж теплоты. Составим пропорцию:

1000 г - 6340 кДж;

504 г - х кДж.

Отсюда х будет равен:

х = 540 ×6340 / 1000 = 3195.

Значит в ходе реакции получения железа алюмотермическим методом выделяется 3195 кДж теплоты. Термохимическое уравнение реакции имеет вид:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 + 3195 кДж.

Ответ В ходе реакции выделяется 3195 кДж теплоты.

ПРИМЕР 2

Задание Алюминий обработали 200 г 16%-го раствора азотной кислоты, при этом выделился газ. Определите массу и объем выделившегося газа.
Решение Запишем уравнение реакции растворения алюминия в азотной кислоте:

2Al + 6HNO 3 = 2Al(NO 3) 3 + 3H 2 -.

Рассчитаем массу растворенного вещества азотной кислоты:

m(HNO 3) = m solution (HNO 3)×w(HNO 3) / 100%;

m(HNO 3) = 20 ×96% / 100% =19,2 г.

Найдем количество вещества азотной кислоты:

M(HNO 3) = Ar(H) + Ar(N) + 3×Ar(O) = 1 + 14 + 3×16 = 63 г/моль.

n(HNO 3) = m (HNO 3) / M(HNO 3);

n(HNO 3) = 19,2 / 63 = 0,3моль.

Согласно уравнению реакцииn(HNO 3) :n(H 2) = 6:3, т.е.

n(H 2) = 3×n(HNO 3) / 6 = ½ ×n(HNO 3) = ½ × 0,3 = 0,15 моль.

Тогда масса и объем выделившегося водорода будут равны:

M(H 2) = 2×Ar(H) = 2×1 = 2 г/моль.

m(H 2) = n(H 2) ×M(H 2) = 0,15×2 = 0,3г.

V(H 2) = n(H 2) ×V m ;

V(H 2) = 0,15× 22,4 = 3,36л.

Ответ В результате реакции выделяется водород массой 0,3 г и объемом 3,36 л.

Алюминий

АЛЮМИ́НИЙ -я; м. [от лат. alumen (aluminis) - квасцы]. Химический элемент (Al), серебристо-белый лёгкий ковкий металл с высокой электропроводностью (применяемый в авиации, электротехнике, строительстве, быту и т.п.). Сульфат алюминия. Сплавы алюминия.

алюми́ний

(лат. Aluminium, от alumen - квасцы), химический элемент III группы периодической системы. Серебристо-белый металл, лёгкий (2,7 г/см 3), пластичный, с высокой электропроводностью, t пл 660ºC. Химически активен (на воздухе покрывается защитной оксидной плёнкой). По распространённости в природе занимает 4-е место среди элементов и 1-е среди металлов (8,8% от массы земной коры). Известно несколько сотен минералов алюминия (алюмосиликаты, бокситы, алуниты и др.). Получают электролизом глинозёма Al 2 O 3 в расплаве криолита Na 3 AlF 6 при 960ºC. Применяют в авиации, строительстве (конструкционный материал, преимущественно в виде сплавов с другими металлами), электротехнике (заменитель меди при изготовлении кабелей и др.), пищевой промышленности (фольга), металлургии (легирующая добавка), алюминотермии и др.

АЛЮМИНИЙ

АЛЮМИ́НИЙ (лат. Aluminium), Al (читается «алюминий»), химический элемент с атомным номером 13, атомная масса 26,98154. Природный алюминий состоит из одного нуклида 27 Al. Расположен в третьем периоде в группе IIIA периодической системы элементов Менделеева. Конфигурация внешнего электронного слоя 3s 2 p 1 . Практически во всех соединениях степень окисления алюминия +3 (валентность III).
Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al 3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.
Простое вещество алюминий - мягкий легкий серебристо-белый металл.
История открытия
Латинское aluminium происходит от латинского же alumen, означающего квасцы (см. КВАСЦЫ) (сульфат алюминия и калия KAl(SO 4) 2 ·12H 2 O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному - оксид алюминия (см. АЛЮМИНИЯ ОКСИД) ) сделал еще в 1754 немецкий химик А. Маргграф (см. МАРГГРАФ Андреас Сигизмунд) . Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед (см. ЭРСТЕД Ханс Кристиан) . Он обработал амальгамой калия (сплавом калия со ртутью) хлорид алюминия AlCl 3 , который можно было получить из глинозема, и после отгонки ртути выделил серый порошок алюминия.
Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль (см. СЕНТ-КЛЕР ДЕВИЛЬ Анри Этьен) в 1854 предложил использовать для получения алюминия металлический натрий (см. НАТРИЙ) , и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.
Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (см. ЭРУ Поль Луи Туссен) (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20 веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.
Нахождение в природе
По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода и кремния), на его долю приходится около 8,8% массы земной коры. Алюминий входит в состав огромного числа минералов, главным образом, алюмосиликатов (см. АЛЮМОСИЛИКАТЫ) , и горных пород. Соединения алюминия содержат граниты (см. ГРАНИТ) , базальты (см. БАЗАЛЬТ) , глины (см. ГЛИНА) , полевые шпаты (см. ПОЛЕВЫЕ ШПАТЫ) и др. Но вот парадокс: при огромном числе минералов и пород, содержащих алюминий, месторождения бокситов (см. БОКСИТЫ) - главного сырья при промышленном получении алюминия, довольно редки. В России месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты (см. АЛУНИТ) и нефелины (см. НЕФЕЛИН) .
В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы-концентраторы, накапливающие алюминий в своих органах, - некоторые плауны, моллюски.
Промышленное получение
При промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния и железа и других элементов. В результате такой переработки получают чистый оксид алюминия Al 2 O 3 - основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al 2 O 3 очень высока (более 2000 °C), использовать его расплав для электролиза не удается.
Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит (см. КРИОЛИТ) Na 3 AlF 6 (температура расплава немного ниже 1000 °C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al 2 О 3 (до 10 % по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий:
2Al 2 О 3 = 4Al + 3О 2 .
Так как анодом при электролизе служит графит, то выделяющийся на аноде кислород реагирует с графитом и образуется углекислый газ СО 2 .
При электролизе получают металл с содержанием алюминия около 99,7%. В технике применяют и значительно более чистый алюминий, в котором содержание этого элемента достигает 99,999% и более.
Физические и химические свойства
Алюминий - типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660 °C, температура кипения около 2450 °C, плотность 2,6989 г/см 3 . Температурный коэффициент линейного расширения алюминия около 2,5·10 -5 К -1 . Стандартный электродный потенциал Al 3+ /Al –1,663В.
Химически алюминий - довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al 2 О 3 , которая препятствует дальнейшему доступу кислорода к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.
С остальными кислотами алюминий активно реагирует:
6НСl + 2Al = 2AlCl 3 + 3H 2 ,
3Н 2 SO 4 + 2Al = Al 2 (SO 4) 3 + 3H 2 .
Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:
Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.
Затем протекают реакции:
2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ,
NaOH + Al(OH) 3 = Na,
или суммарно:
2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,
и в результате образуются алюминаты (см. АЛЮМИНАТЫ) : Na - алюминат натрия (тетрагидроксоалюминат натрия), К - алюминат калия (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число (см. КООРДИНАЦИОННОЕ ЧИСЛО) 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие: Na и К.
При нагревании алюминий реагирует с галогенами:
2Al + 3Cl 2 = 2AlCl 3 ,
2Al + 3 Br 2 = 2AlBr 3 .
Интересно, что реакция между порошками алюминия и иода (см. ИОД) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:
2Al + 3I 2 = 2AlI 3 .
Взаимодействие алюминия с серой при нагревании приводит к образованию сульфида алюминия:
2Al + 3S = Al 2 S 3 ,
который легко разлагается водой:
Al 2 S 3 + 6Н 2 О = 2Al(ОН) 3 + 3Н 2 S.
С водородом алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений (см. АЛЮМИНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ) , можно синтезировать твердый полимерный гидрид алюминия (AlН 3) х - сильнейший восстановитель.
В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al 2 О 3 .
Высокая прочность связи в Al 2 О 3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:
3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe и даже
3СаО + 2Al = Al 2 О 3 + 3Са.
Такой способ получения металлов называют алюминотермией (см. АЛЮМИНОТЕРМИЯ) .
Амфотерному оксиду Al 2 О 3 соответствует амфотерный гидроксид - аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl 2 O 3 ·yH 2 O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH) 3 .
В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями:
Al 2 (SO 4) 3 + 6NaOH = 2Al(OH) 3 + 3Na 2 SO 4 ,
или за счет добавления соды к раствору соли алюминия:
2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 Ї + 6NaCl + 3CO 2 ­,
а также добавлением раствора аммиака к раствору соли алюминия:
AlCl 3 + 3NH 3 ·H 2 O = Al(OH) 3 Ї + 3H 2 O + 3NH 4 Cl.
Применение
По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами - ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. Сплавы алюминия отличаются малой плотностью, повышенной (по сравнению с чистым алюминием) коррозионной стойкостью и высокими технологическими свойствами: высокой тепло- и электропроводностью, жаропрочностью, прочностью и пластичностью. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.
Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов - дуралюмина (см. ДУРАЛЮМИН) (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумина (85-90% Al, 10-14% Si, 0,1% Na) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди, магния, железа, никеля и др.
Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония - циркалой - широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ.
Особо следует отметить окрашенные пленки из оксида алюминия на поверхности металлического алюминия, получаемые электрохимическим путем. Покрытый такими пленками металлический алюминий называют анодированным алюминием. Из анодированного алюминия, по внешнему виду напоминающему золото, изготовляют различную бижутерию.
При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.
Алюминий в организме
В организм человека алюминий ежедневно поступает с пищей (около 2-3 мг), но его биологическая роль не установлена. В среднем в организме человека (70 кг) в костях, мышцах содержится около 60 мг алюминия.


Энциклопедический словарь . 2009 .

Синонимы :

    - (символ Аl), металл серебристо белого цвета, элемент третьей группы периодической таблицы. Впервые в чистом виде был получен в 1827 г. Наиболее распространенный металл в коре земного шара; главным источником его является руда боксит. Процесс… … Научно-технический энциклопедический словарь

    АЛЮМИНИЙ - АЛЮМИНИЙ, Aluminium (хим. знак А1, ат. вес 27,1), самый распространенный на поверхности земли металл и, после О и кремния, важнейшая составная часть земной коры. А. встречается в природе, по преимуществу, в виде солей кремнекислоты (силикатов);… … Большая медицинская энциклопедия

    Алюминий - представляет собой голубовато белый металл, отличающийся особой легкостью. Он очень пластичен, легко поддается прокатке, волочению, ковке, штамповке, а также литью и т.д. Как и другие мягкие металлы, алюминий также очень хорошо поддается… … Официальная терминология

    Алюминий - (Aluminium), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154; легкий металл, tпл660 °С. Содержание в земной коре 8,8% по массе. Алюминий и его сплавы используют как конструкционные материалы в… … Иллюстрированный энциклопедический словарь

    АЛЮМИНИЙ, алюмний муж., хим. щелочной металл глиний, основа глинозема, глины; также, как основа ржавчины, железо; а яри медь. Алюминит муж. ископаемое, похожее на квасцы, водный сернокислый глинозем. Алюнит муж. ископаемое, весьма близкое к… … Толковый словарь Даля

    - (серебристый, легкий, крылатый) металл Словарь русских синонимов. алюминий сущ., кол во синонимов: 8 глиний (2) … Словарь синонимов

    - (лат. Aluminium от alumen квасцы), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154. Серебристо белый металл, легкий (2,7 г/см³), пластичный, с высокой электропроводностью, tпл 660 .С.… … Большой Энциклопедический словарь

    Al (от лат. alumen название квасцов, применявшихся в древности как протрава при крашении и дублении * a. aluminium; н. Aluminium; ф. aluminium; и. aluminio), хим. элемент III группы периодич. системы Mенделеева, ат. н. 13, ат. м. 26,9815 … Геологическая энциклопедия

    АЛЮМИНИЙ, алюминия, мн. нет, муж. (от лат. alumen квасцы). Серебристо белый ковкий легкий металл. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

  • Обозначение - Al (Aluminium);
  • Период - III;
  • Группа - 13 (IIIa);
  • Атомная масса - 26,981538;
  • Атомный номер - 13;
  • Радиус атома = 143 пм;
  • Ковалентный радиус = 121 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 1 ;
  • t плавления = 660°C;
  • t кипения = 2518°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,61/1,47;
  • Степень окисления: +3, 0;
  • Плотность (н. у.) = 2,7 г/см 3 ;
  • Молярный объем = 10,0 см 3 /моль.

Алюминий (квасцы) впервые был полуен в 1825 году датчанином Г. К. Эрстедом. Изначально, до открытия промышленного способа получения, алюминий был дорооже золота.

Алюминий является самым распространенным металлом в земной коре (массовая доля составляет 7-8%), и третьим по распространенности среди всех элементов после кислорода и кремния. В свободном виде в проироде алюминий не встречается.

Важнейшие природные соединения алюминия:

  • алюмосиликаты - Na 2 O·Al 2 O 3 ·2SiO 2 ; K 2 O·Al 2 O 3 ·2SiO 2
  • бокситы - Al 2 O 3 ·n H 2 O
  • корунд - Al 2 O 3
  • криолит - 3NaF·AlF 3


Рис. Строение атома алюминия .

Алюминий химически активный металл - на его внешнем электронном уровне находятся три электрона, которые участвуют в образовании ковалентных связей при взаимодействии алюминия с другими химическими элементами (см. Ковалентная связь). Алюминий - сильный восстановитель, во всех соединениях проявляет степень окисления +3.

При комнатной температуре алюминий вступает в реакцию с кислородом, содержащимся в атмосферном воздухе, с образованием прочной оксидной пленки, которая надежно препятствует процессу дальнейшего окисления (корродирования) металла, в результате чего химическая активность алюминия снижается.

Благодаря оксидной пленке алюминий не вступает в реакцию с азотной кислотой при комнатной температуре, поэтому, алюминиевая посуда является надежной тарой для хранения и трансопртирования азотной кислоты.

Физические свойства алюминия:

  • металл серебристо-белого цвета;
  • твердый;
  • прочный;
  • легкий;
  • пластичный (протягивается в тонкую проволоку и фольгу);
  • обладает высокой электро- и теплопроводностью;
  • температура плавления 660°C
  • природный алюминий состоит из одного изотопа 27 13 Al

Химические свойства алюминия :

  • при снятии оксидной пленки алюминий реагирует с водой:
    2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ;
  • при комнатной температуре вступает в реакции с бромом и хлором с образованием солей:
    2Al + 3Br 2 = 2AlCl 3 ;
  • при высокой температуре алюминий реагирует с кислородом и серой (реакция сопровождается выделением большого кол-ва тепла):
    4Al + 3O 2 = 2Al 2 O 3 + Q;
    2Al + 3S = Al 2 S 3 + Q;
  • при t=800°C реагирует с азотом:
    2Al + N 2 = 2AlN;
  • при t=2000°C реагирует с углеродом:
    2Al + 3C = Al 4 C 3 ;
  • восстанавливает многие металлы из их оксидов - алюмотермией (при t до 3000°C) получают промышленным способом вольфрам, ванадий, титан, кальций, хром, железо, марганец:
    8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe;
  • с соляной и разбавленной серной кислотой реагирует с выделением водорода:
    2Al + 6HCl = 2AlCl 3 + 3H 2 ;
    2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 ;
  • с концентрированной серной кислотой реагирует при высокой температуре:
    2Al + 6H 2 SO 4 = Al 2 (SO 4) 3 + 3SO 2 + 6H 2 O;
  • со щелочами реагирует с выделением водорода и образованием комплексных солей - реакция идет в несколько этапов: при погружении алюминия в раствор щелочи происходит растворение прочной защитной оксидной пленки, которая находится на поверхности металла; после растворения пленки, алюминий, как активиный металл, реагирует с водой с образованием гидроксида алюминия, который взаимодействует со щелочью, как амфотерный гидроксид:
    • Al 2 O 3 +2NaOH = 2NaAlO 2 +H 2 O - растворение оксидной пленки;
    • 2Al+6H 2 O = 2Al(OH) 3 +3H 2 - взаимодействие алюминия с водой с образованием гидроксида алюминия;
    • NaOH+Al(OH) 3 = NaAlO 2 +2H 2 O - взаимодействие гидроксида алюминия со щелочью
    • 2Al+2NaOH+2H 2 O = 2NaAlO 2 +3H 2 - суммарное уравнение реакции алюминия со щелочью.

Соединения алюминия

Al 2 O 3 (глинозем)

Оксид алюминия Al 2 O 3 является белым, очень тугоплавким и твердым веществом (в природе тверже только алмаз, карборунд и боразон).

Свойства глинозема:

  • не растворяется в воде и вступает с ней в реакцию;
  • является амфотерным веществом, реагируя с кислотами и щелочами:
    Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O;
    Al 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 ;
  • как амфотерный оксид реагирует при сплавлении с оксидами металлов и солями, образуя алюминаты:
    Al 2 O 3 + K 2 O = 2KAlO 2 .

В промышленности глинозем получают из бокситов. В лабораторных условиях глинозем можно получить сжигая алюминий в кислороде:
4Al + 3O 2 = 2Al 2 O 3 .

Применение глинозема :

  • для получения алюминия и электротехнической керамики;
  • в качестве абразивного и огнеупорного материала;
  • в качестве катализатора в реакциях органического синтеза.

Al(OH) 3

Гидроксид алюминия Al(OH) 3 является белым твердым кристаллическим веществом, которое получается в результате обменной реакции из раствора гидроксида алюминия - выпадает в виде белого студенистого осадка, кристаллизующегося со временем. Это амфотерное соединение почти не растворимое в воде:
Al(OH) 3 + 3NaOH = Na 3 ;
Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O.

  • взаимодействие Al(OH) 3 с кислотами:
    Al(OH) 3 +3H + Cl = Al 3+ Cl 3 +3H 2 O
  • взаимодействие Al(OH) 3 со щелочами:
    Al(OH) 3 +NaOH - = NaAlO 2 - +2H 2 O

Гидроксид алюминия получают путем действия щелочей на растворы солей алюминия:
AlCl 3 + 3NaOH = Al(OH) 3 + 3NaCl.

Получение и применение алюминия

Алюминий достаточно трудно выделить из природных соединений химическим способом, что объясняется высокой прочностью связей в оксиде алюминия, поэтому, для промышленного получения алюминия применяют электролиз раствора глинозема Al 2 O 3 в расплавленном криолите Na 3 AlF 6 . В результате процесса алюминий выделяется на катоде, на аноде - кислород:

2Al 2 O 3 → 4Al + 3O 2

Исходным сырьем служат бокситы. Электролиз протекает при температуре 1000°C: температура плавления оксида алюминия составляет 2500°C - проводить электролиз при такой температуре не представляется возможным, поэтому оксид алюминия растворяют в расплавленном криолите, и уже затем полученный электролит используют при электролизе для получения алюминия.

Применение алюминия:

  • алюминиевые сплавы широко применяются в качестве конструкционных материалов в автомобиле-, самолето-, судостроении: дюралюминий, силумин, алюминиевая бронза;
  • в химической промышленности в качестве восстановителя;
  • в пищевой промышленности для изготовления фольги, посуды, упаковочного материала;
  • для изготовления проводов и проч.